当前位置:问百问>生活百科>对数函数log 的各种公式

对数函数log 的各种公式

2024-12-01 07:56:42 编辑:zane 浏览量:502

对数函数log 的各种公式

的有关信息介绍如下:

对数函数log 的各种公式

1、a^(log(a)(b))=b   2、log(a)(a^b)=b  3、log(a)(MN)=log(a)(M)+log(a)(N);   4、log(a)(M÷N)=log(a)(M)-log(a)(N);   5、log(a)(M^n)=nlog(a)(M)   6、log(a^n)M=1/nlog(a)(M)  推导   1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。   2、因为a^b=a^b  令t=a^b  所以a^b=t,b=log(a)(t)=log(a)(a^b)  3、MN=M×N   由基本性质1(换掉M和N)   a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)  由指数的性质   a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}   两种方法只是性质不同,采用方法依实际情况而定  又因为指数函数是单调函数,所以   log(a)(MN) = log(a)(M) + log(a)(N)   4、与(3)类似处理   MN=M÷N   由基本性质1(换掉M和N)   a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]   由指数的性质   a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}   又因为指数函数是单调函数,所以   log(a)(M÷N) = log(a)(M) - log(a)(N)   5、与(3)类似处理   M^n=M^n   由基本性质1(换掉M)   a^[log(a)(M^n)] = {a^[log(a)(M)]}^n   由指数的性质   a^[log(a)(M^n)] = a^{[log(a)(M)]*n}   又因为指数函数是单调函数,所以   log(a)(M^n)=nlog(a)(M)  基本性质4推广  log(a^n)(b^m)=m/n*[log(a)(b)]  推导如下:  由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]   log(a^n)(b^m)=ln(b^m)÷ln(a^n)  换底公式的推导:  设e^x=b^m,e^y=a^n  则log(a^n)(b^m)=log(e^y)(e^x)=x/y  x=ln(b^m),y=ln(a^n)  得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)  由基本性质4可得  log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}  再由换底公式  log(a^n)(b^m)=m÷n×[log(a)(b)]

版权声明:文章由 问百问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.wenbwen.com/life/214057.html
热门文章